Suivi l'épidémie de COVID-19 et projections des besoins hospitaliers au Québec

Mise à jour du 30 septembre 2020

Sommaire méthodologique

Evolution à court terme de l'épidémie et des besoins hospitaliers

Objectif

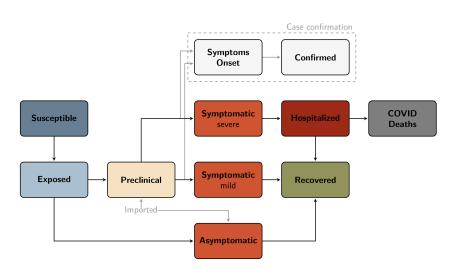
Suivre l'évolution de l'épidémie de SRAS-CoV-2 pour évaluer les besoins hospitaliers.

Résumé méthodologique

- 1 ère étape: À partir des hospitalisations observées, un modèle de transmission du COVID-19 a été développé pour prédire le nombre de nouvelles hospitalisations anticipées.
- 2º étape: Sur la base de ces prédictions, les besoins en ressources hospitalières (occupation des lits sur les étages et aux soins intensifs) sont projetés sur un horizon de 4 semaines.

1 Modèle de transmission de type SEIR

Estimer le R(t) et prédire nouvelles admissions



Modèle semi-mécanistique

L'impact des interventions est capturé indirectement à l'aide d'un taux de transmission qui varie dans le temps.

Permet

- D'estimer le nombre journalier de nouvelles hospitalisations.
- D'élaborer des scénarios en variant le taux de transmission.

2

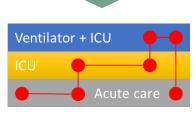
Modèle de demande en ressources

Prédire les besoins en ressources

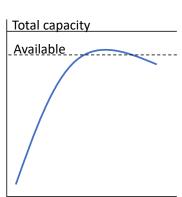
Admissions
passées
(observations) et
futures (du modèle
transmission)

Day	Arrivals
2/27	3
2/2	13
6/	

Trajectoires d'utilisation



Estimation de la demande en ressources



Modèle de Markov

Les trajectoires d'utilisation des soins pour les personnes atteintes de COVID-19 nouvellement admises en centres hospitaliers.

Permet

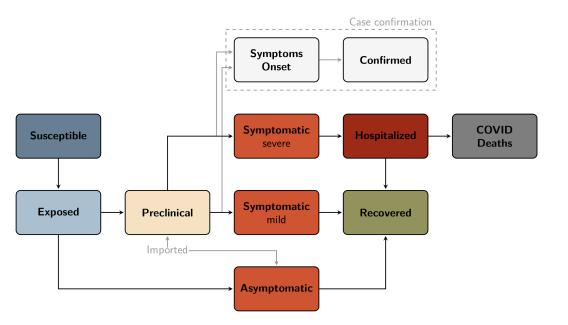
- Une estimation de l'utilisation des ressources sur un horizon de 4 semaines.
- D'examiner l'impact de différentes politiques d'utilisation des ressources.

Equations, paramètres et statistiques

Modèle de transmission du COVID-19 Étape 1

Schéma du modèle mathématique

Diagramme du modèle



Force d'infection

Cette quantité est calculée comme suit:

$$\lambda_t = \beta_t \times S_t \times \frac{I_p + I_s + I_l + I_a}{N}$$

où β_t est le taux de contact; S_t le nombre de personne susceptible; I_p,I_s,I_l , et I_a sont le nombre de personnes infectieuses dans le stade pré-clinique, avec symptômes sévères, légers et asymptomatiques, respectivement.

Note

- La force d'infection est le taux per capita auquel les individus susceptibles acquièrent l'infection.
- Le nombre de cas importés (*Z(t)*) provient du V10.
- Les périodes de latence et d'infectiosité suivent des distributions d'Erlang-2.
- Un algorithme de Euler avec un pas de temps de 1.2 heures est utilisé pour résoudre numériquement le système d'équations différentielles.

Principaux paramètres du modèle

Table 1. Liste des paramètres du modèle

Paramètres	Symboles	Valeurs	Références	
Taux de transmission	$\beta(t)$	Calibré	Non-applicable	
Réduction de l'infectiosité chez les asymptomatiques	heta	50%	50% [1-3]	
Durée de la période pré-infectieuse (latente)	1 / ρ	4.2 jours [1, 3]		
Durée de la période d'incubation	1 / ε	5.2 jours [4, 5]		
Proportion d'infections symptomatiques	κ_s	68.8%	[3]*	
Proportion d'infections symptomatiques requérant une hospitalisation (sévère)	κ_h	6.2% / κ_s	[6]*	
Durée de la période infectieuse (communauté)	$1/\sigma_c$	5 jours	[1, 7]	
Durée de l'hospitalisation	$1/\sigma_d$	12.7	MSSS	
Proportion des hospitalisations qui vont décéder	μ	30.2%	MSSS	
Délai entre l'apparition des symptômes et le dépistage	$1/\pi$	2.5 jours	Prémisse	
Proportion des cas symptomatiques qui seront dépistée	$\omega(t)$	60%	Prémisse	

^{*}Paramètres standardisées à la distribution d'âge du Québec.

- 1. Davies N, Kucharski A, Eggo R, Gimma A, CMMID COVID-19 Working Group, Edmunds W. The effect of non-pharmaceutical interventiosn on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. In: Centre for Mathematical Modelling of Infectious Diseases, LSHTM; 2020.
- 2. Ferguson N, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. In. London, UK: Imperial College London; 2020. pp. 20.
- 3. Kerr C, Stuart R, Mistry D, Abeysuriya R, Hart G, Rosenfeld K, et al. Covasim: an agent-based model of COVID-19 dynamics and interventions. *medRxiv* 2020.
- 4. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. *N Engl J Med* 2020; 382(13):1199-1207.
- 5. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. **Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures**. *Proc Natl Acad Sci U S A* 2020; 117(19):10484-10491.
- 6. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020.
- 7. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020.

Sources des données

Nombre de cas confirmés

 Ces données ne sont pas utilisées pour le moment en raison des variations importantes des critères d'éligibilité et des efforts de dépistage.

Nombre d'hospitalisations journalier

- Données MED-ECHO et GESTRED.
 - Les transferts provenant des CHSLD ne sont pas pris en compte pour calculer le taux de transmission. Cependant, le modèle de projections des hospitalisations comptabilise les transferts passés.

Nombre de décès par jour

Ces données ne sont pas utilisées.

Note

Les données d'hospitalisation des 2 derniers journées sont exclues des calibrations.

Cadre Bayésien – fonction de vraisemblance

Fonction de vraisemblance

Le nombre observé de nouvelles hospitalisations ($Hosp_t$) au temps t suit une loi binomial négative :

$$Hosp_t \sim NB\left(H_t, H_t + \frac{{H_t}^2}{r}\right)$$

où H_t est le nombre d'hospitalisations prédit par le modèle et r est le paramètre de « sur-dispersion ». Pour ce dernier, une distribution gamma est utilisée :

$$r \sim Gamma(100, 0.01)$$

Note

 Le modèle peut facilement être calibré aux autres types de données épidémiologiques. Par exemple, à de futures enquêtes de séroprévalence.

Cadre Bayésien – distributions à priori

Distributions à priori

 Le nombre d'individus infectieux au début de la simulation (28 février 2020) est entre 1 et 25.

$$Z_{t=0} \sim Uniform(1,25)$$

 Le paramètre de transmission R(t) au début de l'épidémie correspond à un R_o de 2.6 (95%CI: 2.1-2.8). Une transformation logistique est utilisée afin de restreindre le taux de transmission entre 0 et 3.

$$\beta_{t=0} \sim logit^{-1} \left(Normal \left(logit(\frac{2.6}{3}), 0.5 \right) \right) \times \frac{3}{\sigma_c}$$

 Les taux de transmission pour les t>0 sont modélisés comme une marche aléatoire de premier ordre et où la pénalité a une distribution à priori de Cauchy tronquée:

$$\beta_{t} \sim logit^{-1} \left(Normal \left(logit(\frac{\beta_{t-1}}{3} \sigma_{c}), \sigma_{rw} \right) \right) \times \frac{3}{\sigma_{c}}$$

$$\sigma_{rw} \sim HC(0, 25)$$

Cadre Bayésien - Inférences statistiques

Procédure d'estimation

- Le modèle est calibré aux données en utilisant des méthodes de *Monte-Carlo par chaînes de Markov*.
- Ces méthodes permettent d'obtenir des échantillons de la distribution postérieure du vecteur de paramètres. L'avantage de l'utilisation de méthodes Bayésiennes est la propagation efficace de l'incertitude aux résultats.
- La librairie Nimble de R est utilisé. Des algorithmes adaptatifs de marche aléatoire de type Metropolis-Hasting et Automated Factor Slice Sampling permettent une bonne convergence des chaînes.

Note

 Un total de 8 chaînes MCMC de 30,000 itérations sont utilisées (warm-up de 5,000 et intervalle d'éclaircissement de 20). L'examen des chaînes permet de s'assurer de la convergence de l'algorithme.

Indicateurs

Détails des calculs

Taux de transmission

 Le taux de transmission (r_t) est calculé à partir des distributions postérieur des taux de contacts estimés.

$$r_t = \left(\kappa_s \frac{\beta_t}{\sigma_c} + (1 - \kappa_s) \frac{\theta \times \beta_t}{\sigma_c}\right) \times \frac{S_t}{N_t}$$

Les intervalles de crédibilité à 50% et 95% correspondent au 25^e et 75^e et au 2.5^e et 97.5^e percentiles de la distribution postérieure est estimés.

Équations du modèle mathématique

Equations différentielles ordinaires

Susceptibles:

$$\frac{dS(t)}{dt} = -\beta(t) S(t) \frac{\sum_{i=1}^{2} (P^{i}(t) + I_{s}^{i}(t) + \theta I_{a}^{i}(t) + I_{h}^{i}(t))}{N}$$

Exposed:

$$\frac{dE^{1}(t)}{dt} = \beta(t)S(t)\frac{\sum_{i=1}^{2} \left(P^{i}(t) + I_{S}^{i}(t) + \theta I_{a}^{i}(t) + I_{h}^{i}(t)\right)}{N} - 2\varepsilon E^{1}(t)$$

$$\frac{dE^{2}(t)}{dt} = 2\varepsilon E^{1}(t) - 2\varepsilon E^{2}(t)$$

Pre-clinical (infectious but asymptomatic):

$$\frac{dP^{1}(t)}{dt} = \kappa_{s} 2\varepsilon E^{2}(t) - 2\rho P^{1}(t) + Z_{t}$$

$$\frac{dP^{2}(t)}{dt} = 2\rho P^{1}(t) - 2\rho P^{2}(t)$$

where Z_t is the number of imported cases that became infectious at time t.

Infectious (symptomatic, not severe):

$$\frac{dI_s^1(t)}{dt} = (1 - \kappa_h) 2\rho P^2(t) - 2\sigma_c I_s^1(t)$$
$$\frac{dI_s^2(t)}{dt} = 2\sigma_c I_s^1(t) - 2\sigma_c I_s^2(t)$$

Infectious (symptomatic, severe and pre-hospitalization):

$$\frac{dI_{h}^{1}(t)}{dt} = \kappa_{h} 2\rho P^{2}(t) - 2\sigma_{c}I_{h}^{1}(t)$$

$$\frac{dI_{h}^{2}(t)}{dt} = 2\sigma_{c}I_{h}^{1}(t) - 2\sigma_{c}I_{h}^{2}(t)$$

Équations du modèle mathématique

Equations différentielles ordinaires (suite)

Infectious (asymptomatic):

$$\frac{dI_a^1(t)}{dt} = (1 - \kappa_s) 2\varepsilon E^2(t) - 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^1(t) + Z_t \times (1/\kappa_s)$$

$$\frac{dI_a^2(t)}{dt} = 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^1(t) - 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^2(t)$$

where Z_t is the number of imported cases that became infectious at time t.

Hospitalized:

$$\frac{dH(t)}{dt} = 2\sigma_c I_h^2(t) - \sigma_d H(t)$$

Recovered:

$$\frac{dR(t)}{dt} = 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^2(t) + 2\sigma_c I_s^2(t) + (1 - \mu)\sigma_d H(t)$$

Cumulative deaths

$$\frac{dD(t)}{dt} = D(t) + \mu \sigma_d H(t)$$

People with symptoms onset:

$$\frac{dO(t)}{dt} = 2\rho P^2(t) - \pi(t)O(t) + \psi Z_t$$

Cumulative confirmed cases:

$$\frac{dC(t)}{dt} = \omega(t)\pi(t)O(t)$$

Equations, paramètres et statistiques

Modélisation des besoins en ressources hospitalières Étape 2

Modélisation des trajectoires

Modèle de Markov – indices et états

Indices

- / états de Markov (besoin courant en ressources)
- J états de Markov (besoin en ressources après la transition)
- T jours de la simulation (t = 1,..., T)

États (niveau des besoins en ressources)

- 1. Lits en soins actif avant les soins intensifs (SI) (actifs 1)
- Aux SI
- 3. Aux SI et ventilé
- 4. Lits en soins actif avant les SI (actifs 2)
- 5. Congé hospitalier
- 6. Décès

Modélisation des trajectoires

Modèle de Markov – intrants, paramètres et indicateurs

Intrants

- \mathbf{n}° , un vecteur avec la distribution initiale de longueur I pour laquelle n° est le nombre d'individus nécessitant I.
- A, une matrice de dimension / x T qui décrit les nouvelles admissions en centre hospitalier et nécessitant des ressources spécifique (obtenu du modèle de transmission).

Paramètres

• **P***, est une matrice de transition de dimensions $I \times J$ où $p^*_{i,j}$ est la probabilité de transition (par jour) de l'état i à l'état j, conditionnellement à son état actuel (diapo suivante).

Indicateurs

■ N, est une matrice $l \times T$ contentant le nombre d'individus nécessitant les ressources de l'état l au jour t.

Transitions et précisions

 P_{ii}^* - Transitions au au prochain état en fonction de l'état actuel

$oldsymbol{ ho}_{i,j}^{\star}$	1 (actifs 1)	2 (SI)	3 (SI + respirateur)	4 (actifs 2)	5 (congé)	6 (décès)
1 (actifs 1)	$p_{1,1}^{*}$	$p_{1,2}^{*}$	$p_{1,3}^*$	0	$p_{1,5}^{*}$	p _{1,6}
2 (SI)	0	$p_{2,2}^{*}$	0	$p_{2,4}^{*}$	$p_{2,5}^{*}$	$p_{2,6}^{*}$
3 (SI + respirateur)	0	0	$p^*_{3,3}$	$p_{3,4}^{*}$	$p_{3,5}^{*}$	$p_{3.6}^{*}$
4 (actifs 2)	0	Ο	0	$p_{4,4}^{*}$	$p_{4.5}^{*}$	$p_{4.6}^{*}$
5 (congé)	0	Ο	0	0	1	O
6 (décès)	0	0	0	0	0	1

Notes

- Les décès et les congés sont des états "absorbants".
- Les personnes hospitalisées requerront des SI avec ou sans ventilation et ne transitionnent pas entre ces états (les données actuelles ne permettant pas un suivi longitudinal de l'utilisation des respirateurs).
- Les individus ne peuvent pas passer du stade de soins actifs 1 (état 1) au stade de soins actifs 2 (état 4).
- Les probabilités de transition (p_{ij}) sont estimées à partir de données hospitalières (MED-ECHO Live).

17

Équipes et collaborations U McGill, U Laval, INESSS et INSPQ

Collaborateurs

Équipes de modélisation

Université McGill

Mathieu Maheu-Giroux et David Buckeridge

Alexandra Schmidt Alton Russell

Arnaud Godin Maxime Lavigne

Yiqing Xia Yannan Shen

Dirk Douwes-Schultz Aman Verma

Collaborateurs à l'Université Laval

Marc Brisson, Guillaume Gingras, Caty Blanchette, Mélanie Drolet

Contexte

Travaux réalisés dans le cadre d'un mandat confié par l'INESSS, avec la collaboration d'une équipe constituée de scientifiques de l'INESSS et de l'INSPQ.

https://www.inspq.qc.ca/covid-19/donnees/projections/hospitalisation 19

Remerciements

Université McGill

M[i]⁴ Initiative interdisciplinaire en infection et immunité

Chaires (de recherche Findu Canada (de chaires findu Canada (de chaires

Canada Research Chairs

